A STUDENT SHOULD BE ABLE TO:

1. With respect to lipids, know:
 - The characteristic common to members of the class (solubility in nonpolar solvents)
 - The functional groups most important in triglycerides (triacylglycerols): Esters (and, in unsaturated fats, alkenes)
 - The characteristic common to most naturally occurring fatty acids (even numbers of carbon atoms, cis configuration for unsaturated compounds, lack of branching)
 - Saturated, unsaturated, and polyunsaturated fats; cis and trans fatty acids
 - Characteristics that lead to higher melting points for fatty acids (saturation and higher molecular weight, trans over cis)
 - The products (soap and glycerol) of saponification reactions given the triglyceride starting material, or vice versa
 - Structural features common to terpenes, steroids, and prostaglandins

2. With respect to carbohydrates, know:
 - The approximate empirical formula characteristic of members of the class (CH\(_2\)O).
 - The functional groups present in carbohydrate molecules: alcohols (usually several are present); aldehydes and ketones; hemiacetals and acetals
 - Carbohydrates belonging to these classes: ketoses and aldoses; D and L sugars; monosaccharide classes (trioses, tetroses, pentoses, hexoses, etc.); α and β pyranoses; reducing and nonreducing sugars
 - The products of oxidation and reduction reactions of carbohydrates (reducing sugars are those that can be oxidized. They contain hemiacetals (in the cyclic form) and aldehydes or ketones (in the straight chain form)
 - The number of stereocenters in a carbohydrate given a Fisher structure
 - How to draw the cyclic form given the acyclic structure, and acyclic given the cyclic

3. With respect to amino acids, polypeptides, and proteins, know:
 - The functional groups most important in these compounds. Proteins and polypeptides contain amides made from amino acid monomers; there are carboxylic acid and amine groups on the ends.
 - The degree and site of protonation of amino acids as a function of pH
 - Relative isoelectric points, pI
 - Polypeptide structures from N-terminal analysis, C-terminal analysis, and total and partial hydrolysis results
 - How to link amino acids together to make polypeptides

4. With respect to polymers, know:
 - Common monomer units and polymers made from them (ethylene, propylene, isobutylene, styrene and vinyl chloride).
 - Recognize the following types of copolymers: alternating, random, block, and graft.
 - Draw the mechanism for radical, cationic, anionic and condensation polymerizations
To best prepare for this module, please work suitable Chapters 24-27 Skill Builder problems in the textbook.

A STUDENT WHO HAS MASTERED THE OBJECTIVES ON THE PREVIOUS PAGE SHOULD BE ABLE TO SOLVE THE FOLLOWING PROBLEMS AND RELATED ONES:

1.1 In each of these pairs, which of the compounds has the higher melting point?
 a. \(\text{CH}_3(\text{CH}_2)_{16}\text{COOH} \) or \(\text{CH}_3(\text{CH}_2)_7\text{CH}=\text{CH}(\text{CH}_2)_7\text{COOH} \)
 b. \(\text{CH}_3(\text{CH}_2)_{14}\text{COOH} \) or \(\text{CH}_3(\text{CH}_2)_{16}\text{COOH} \)

1.2 Which of the following fatty acids is a) saturated, b) monounsaturated, and c) polyunsaturated?
 A. \(\text{CH}_3(\text{CH}_2)_{14}\text{COOH} \)
 B. \(\text{CH}_3(\text{CH}_2)_4(\text{CH}=\text{CHCH}_2)_4(\text{CH}_2)_2\text{COOH} \)
 C. \(\text{CH}_3(\text{CH}_2)_7\text{CH}=\text{CH}(\text{CH}_2)_7\text{COOH} \)

1.3 a) Which of the following fatty acids is found commonly in cells?
 A.
 B.
 C.
 D.
 b) Identify each of the compounds in part (a) as cis, trans, or neither.

1.4 Match the structures shown below to the appropriate type of lipid:

a) prostaglandin b) triglyceride c) terpene d) steroid
2.1 For each of the structures below, provide the information needed to complete the table.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Family</th>
<th>Backbone</th>
<th>Configuration</th>
<th># of Chirality Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>ketose</td>
<td>tetrose</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 a) Which of the disaccharides shown here gives a negative Tollens’ test (that is, does not give a silver mirror when treated with a solution of silver nitrate in aqueous ammonia)?

b) Why would heating the compound that is the answer to (a) with dilute aqueous acid yield a product that gives a positive Tollens’ test?
2.3 Draw the β-pyranose form of talose:

\[
\begin{align*}
\text{CHO} \\
\text{HO} & \quad \text{H} \\
\text{HO} & \quad \text{H} \\
\text{HO} & \quad \text{H} \\
\text{H} & \quad \text{OH} \\
\text{CH}_2\text{OH}
\end{align*}
\]

2.4 The structure of an important plant ketopentose, ribulose, is shown below. How many chirality centers does this molecule contain? Draw the structures of the other stereoisomers, and identify each as D or L.

\[
\begin{align*}
\text{CH}_2\text{OH} \\
\text{C} & \quad \text{O} \\
\text{H} & \quad \text{OH} \\
\text{H} & \quad \text{OH} \\
\text{CH}_2\text{OH}
\end{align*}
\]

3.1 Based on the pK$_a$ values given, draw the dominant form of each of the following amino acids at pH 3, at pH 7, and at pH 13. Also, calculate the pI for each.

a) Glycine: pK$_a$ values of 2.3 (for the α-COOH) and 9.6 (for the α-NH$_3^+$).

\[
\begin{align*}
\text{pH 3} & \quad \text{pH 7} & \quad \text{pH 13} & \quad \text{pI} \\
\text{H}_2\text{N} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

b) Glutamic acid, pK$_a$ values of 2.2, 9.7, and 4.3 (for the COOH group at the bottom).

\[
\begin{align*}
\text{pH 3} & \quad \text{pH 7} & \quad \text{pH 13} & \quad \text{pI} \\
\text{H}_2\text{N} & \quad \text{H} \\
\text{(CH}_2)_2\text{CO}_2\text{H}
\end{align*}
\]
c) Histidine, pK_a values of 1.8, 9.2, and 6.0 (for the protonated N designated with a *).

\[
\begin{array}{cccc}
\text{pH 3} & \text{pH 7} & \text{pH 13} & \text{pl} \\
3.2 & & & \\
\end{array}
\]

3.2. A pentapeptide was completely hydrolyzed and found to contain aspartic acid (Asp), lysine (Lys), proline (Pro), and methionine (Met). After partial hydrolysis the dipeptides Lys-Asp, Met-Pro, Lys-Met, and Pro-Lys were identified in the product. What is the sequence of amino acids in this pentapeptide?

A. Lys-Met-Pro-Lys-Asp
B. Asp-Lys-Pro-Met-Lys
C. Lys-Asp-Met-Pro-Lys
D. Pro-Met-Lys-Pro-Asp

3.3 A tridecapeptide (an oligopeptide with 13 amino acid residues) has the following amino acid composition: Ala, Arg, Asp(2), Glu(2), Gly(3), Leu, and Val(3). After partial acid hydrolysis of the tridecapeptide, the following peptides were isolated, and their sequences were determined by Erdman degradation. What is the sequence of the original tridecapeptide?

The peptides are:

- Asp-Glu-Val-Gly-Gly-Glu-Ala
- Val-Asp-Val-Asp-Glu
- Val-Asp-Val
- Glu-Ala-Leu-Gly-Arg
- Val-Gly-Gly-Glu-Ala-Leu-Gly-Arg
- Leu-Gly-Arg

3.4 Draw the structure that results when Asp, Gly, Glu and Ala are joined together to form this peptide: Asp-Gly-Glu-Ala. The structures of the amino acids are in your book.
4.1 Name the following monomers or polymers

\[
\begin{array}{c}
H \quad CH_3 \quad H \\
\text{C} \quad \text{C} \quad \text{C} \\
H \quad H \quad H
\end{array}
\quad \begin{array}{c}
H \quad Cl \\
\text{C} \quad \text{C} \\
H \quad H \quad H
\end{array}
\]

4.2 Classify the following copolymer and identify the monomer units

\[
\begin{array}{cccccccccccc}
H & CH_3 & H & Ph & H & CH_3 & H & Ph & H & CH_3 & H & Ph \\
\text{C} & \text{C}
\end{array}
\]

4.3 Propylene polymerizes via cationic polymerization in the presence of HCl. Show the mechanism for this reaction including initiation, propagation and termination steps.

SOLUTIONS TO SAMPLE PROBLEMS:

1.1 a) CH₃(CH₂)₁₆COOH b) CH₃(CH₂)₁₆COOH

1.2 a) A b) C c) B

1.3 a) B b) B and D are cis, C is trans, and A is neither cis nor trans.

1.4 a) steroid (cortisone) b) prostaglandin c) terpene (camphor)

2.1 Structure Family Backbone Configuration Number

a) ketose	ketose	tetrose	D	1
b) ketose	hexose	hexose	D	3
c) aldose	hexose	hexose	L	4
d) ketose	triose	none	0	
e) aldose	pentose	D	3	

2.2 a) Sucrose. The negative Tollens’ test indicates that the compound is not a reducing sugar; sucrose does not contain a hemiacetal, and therefore is not a reducing sugar. Lactose would give a positive Tollens’ test due to the hemiacetal functional group contained in the structure.

b) Warming with dilute aqueous acid hydrolyzes sucrose into two monosaccharides by cleaving the acetal linkage. It would then produce hemiacetal groups on each of the monosaccharides and thus they become reducing sugars.
2.3

1 CHO

(CH2)2

2 H

3 H

4 H

5 H

6 OH

CH2OH

\begin{align*}
\text{ribulose} & = \text{6 membered ring} \\
\beta\text{-form: OH on anomeric carbon is up, cis to CH}_2\text{OH} \\
\end{align*}

groups on the left of the Fisher projection are up in the cyclic form

2.4 Ribulose contains two chirality centers. The structures of the isomers are:

\[
\begin{align*}
\text{ribulose} & = \text{D} \\
\text{ ribulose} & = \text{L} \\
\text{C=O} & \\
\text{CH}_2\text{OH} & \\
\end{align*}
\]

3.1 a) Glycine, pKₐ values of 2.4 and 9.8. If the pKₐ value for a given proton is less than the pH, that proton is removed. pI = \(\frac{2.4 + 9.8}{2} = 6.1 \)

\[
\begin{align*}
\text{glycine} & \\
\text{pH 3} & \\
\text{pH 7} & \\
\text{pH 13} & \\
\text{H}_2\text{N} & \\
\text{COOH} & \\
\text{H} & \\
\end{align*}
\]

b) Glutamic acid. pI = average of pKa for two acid groups = 3.25

\[
\begin{align*}
\text{glutamic acid} & \\
\text{pH 3} & \\
\text{pH 7} & \\
\text{pH 13} & \\
\text{H}_2\text{N} & \\
\text{COOH} & \\
\text{H} & \\
\text{(CH}_2\text{)}_2 & \\
\text{COOH} & \\
\end{align*}
\]
3.1 c) Histidine. pI = average of pKa for two basic groups = 7.6

Histidine

\[
\begin{align*}
\text{pH 3} & : & \text{COOH} \\
\text{pH 7} & : & \text{COO}^- \\
\text{pH 13} & : & \text{COO}^- \\
\end{align*}
\]

3.2 A
3.3 Val-Asp-Val-Asp-Glu-Val-Gly-Gly-Glu-Ala-Leu-Gly-Arg
3.4

Asp
Gly
Glu
Ala

N-terminus
C-terminus

4.1 isobutylene, polyvinylchloride
4.2 Alternating copolymer made from propylene and styrene
4.3 Initiation: electrophilic addition to alkene

\[
\begin{align*}
\text{1} & \quad \text{2} & \quad \text{3} \\
\text{1} & \quad \text{2} & \quad \text{3} \\
\end{align*}
\]

Propagation

Termination
1. What is the structure of the amino acid HO2CCH2CH(NH2)COOH at a pH of 2.5? The
pK_a’s are 2.2, 9.7, and 4.3 (for the second COOH).

A. \(\text{H}_2\text{NCHCO}_2^- \) B. \(\text{H}_3\text{NCHCO}_2^- \) C. \(\text{H}_3\text{NCHCO}_2^+ \) D. \(\text{H}_2\text{NCHCO}_2^- \)

\(\text{CH}_2\text{CO}_2^- \) \(\text{CH}_2\text{CO}_2\text{H} \) \(\text{CH}_2\text{CO}_2\text{H} \) \(\text{CH}_2\text{CO}_2\text{H} \)

2. Which of the following functional groups is NOT present in the molecule shown?

\[\text{HO} \quad \text{CH}_2\text{OH} \]

A. Acetal B. Hemiacetal C. 1° Alcohol D. 2° Alcohol

3. What functional group is most abundant in proteins?

A. Amide B. Amine C. Carboxylic acid D. Alcohol

4. What are the major products of the reaction shown?

\[\text{CH}_3(\text{CH}_2)_2\text{CO}_2\text{CH} \quad \text{NaOH, excess} \quad \text{CH}_3(\text{CH}_2)_2\text{CO}_2\text{CH} \quad \text{CH}_3(\text{CH}_2)_2\text{CO}_2\text{CH} \]

I: \(\text{CH}_2\text{-CH-CH}_2 \) II: \(\text{CH}_2\text{-CH—CH}_2 \) III: \(\text{CH}_3(\text{CH}_2)_2\text{CO}_2\text{H} \) IV: \(\text{CH}_3(\text{CH}_2)_2\text{CO}_2\text{Na} \)

A. I and III B. I and IV C. II and III D. II and IV

5. The structure of ribose is shown. Ribose is a (an):

\[\text{HOCH}_2\text{O} \quad \text{H} \quad \text{H} \quad \text{O} \quad \text{H} \quad \text{O} \quad \text{H} \]

A. Aldopentose B. Aldohexose C. Ketopentose D. Ketohexose

6. Draw the structure of polystyrene
1. Complete the following equation. Give all organic products.

\[
\text{CH}_2\text{O}_2\text{C(CH}_2\text{)}_{12}\text{CH}_3 \xrightarrow{\text{NaOH, excess}} \text{CHO}_2\text{C(CH}_2\text{)}_{12}\text{CH}_3 \rightarrow \text{CH}_2\text{O}_2\text{C(CH}_2\text{)}_{12}\text{CH}_3
\]

2. Which of the compounds below does NOT give a red precipitate with Benedict’s reagent?

A.
\[
\begin{array}{c}
\text{CH}_2\text{OH} \\
\text{H} \\
\text{O} \\
\text{H} \\
\text{H} \\
\text{OH} \\
\text{H} \\
\text{OH} \\
\text{OH} \\
\text{H} \\
\end{array}
\]

B.
\[
\begin{array}{c}
\text{H} \\
\text{OH} \\
\text{H} \\
\text{OH} \\
\text{O} \\
\text{H} \\
\text{OH} \\
\text{H} \\
\text{OH} \\
\text{H} \\
\end{array}
\]

C.
\[
\begin{array}{c}
\text{CHO} \\
\text{OH} \\
\text{HO} \\
\text{H} \\
\text{OH} \\
\text{H} \\
\text{OH} \\
\text{OH} \\
\text{H} \\
\end{array}
\]

D.
\[
\begin{array}{c}
\text{CH}_2\text{OH} \\
\text{C=O} \\
\text{H} \\
\text{OH} \\
\text{HO} \\
\text{H} \\
\text{OH} \\
\text{H} \\
\text{OH} \\
\end{array}
\]

3. What is the structure of the amino acid shown at a pH of 12? The pKa’s are 2.2 (COOH), 9.0 (NH2), and 10.5 (side chain NH2). What is the pI?

\[
\begin{array}{c}
\text{H} \\
\text{H}_2\text{N} \xrightarrow{\text{C}} \text{CO}_2\text{H} \\
\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2
\end{array}
\]

4. An oligopeptide was analyzed and found to contain the amino acids Phe, Cys, Ala, Ile, Asp, Trp, Thr, and Arg. N-terminal analysis identified Phe, and C-terminal analysis gave Ile. The fragments Arg-Ala-Ile, Cys-Asp-Arg, and Trp-Thr-Cys were identified after partial hydrolysis. What is the amino acid sequence of this peptide?

5. Give the general structure of a block copolymer using monomers A and B.